2009 OIB Antarctic data status Multichannel Coherent Radar Depth Sounder – MCoRDS

Radar depth sounding of polar ice

Multichannel Coherent Radar Depth Sounder (MCoRDS)

Platforms:

DC-8

Transmit power: 500 W
Center frequency: 195 MHz

Pulse duration: 1, 10, or 30 μ s

Pulse bandwidth: 10 or 30 MHz

PRF: 9 kHz

Rx noise figure: 5 dB

Tx/Rx antenna array: 5 elements Element type: λ/4 dipole

Provides excellent sensitivity for mapping ice thickness and internal layers along the ground track.

Sensor hardware for OIB DC-8

MCoRDS electronics

Sensor hardware for OIB DC-8

MCoRDS antenna and fairing hardware

Example data from 02-Nov-09 Flight #12 TSK1 Mission

Mission Overview Survey Details Falcon View Map

Challenges with data reduction

Data volume

22 TB from OIB exceeded CReSIS storage capacity CReSIS recently added 116 TB of storage capacity OIB MCoRDS data also being stored/processed at Indiana University (CReSIS partner)

Radar recording problem on Oct 27 & 28

Radar settings caused system glitch and surface echo data were not recorded

Must rely on surface elevation data produced by others

Challenges with data reduction

MCoRDS data summary and status

Flight #	Date	Survey Area	Data Set Volume (GB)	Priority	Planned completion
1	10/16/2009	GETZ	1256	2	2/19/2010
2	10/18/2009	TSK2	1230	2	2/19/2010
3	10/20/2009	Pine Island (High Alt)	1016	2	2/19/2010
4	10/21/2009	Sealce2			
5	10/24/2009	Sealce1			
6	10/25/2009	86 Arc (High Alt)	1280	2	2/19/2010
7	10/27/2009	PIG2	1684	1	1/29/2010 [1]
8	10/28/2009	TSK3	616	2	1/29/2010
9	10/29/2009	PIG1	1416	1	1/29/2010
10	10/30/2009	Sealce3			
11	10/31/2009	PEN2	1360*	3	3/26/2010
12	11/2/2009	TSK1	1216	2	2/19/2010
13	11/3/2009	PEN1	1280	3	3/26/2010
14	11/4/2009	PEN3	2000	1	1/29/2010 [2]
					3/26/2010
15	11/5/2009	Peninsula (High Alt)	1624	3	3/26/2010
16	11/7/2009	PIG3	1392	1	1/29/2010
17	11/9/2009	PIG4	1184	1	1/29/2010
18	11/12/2009	ABBOTT	980	3	3/26/2010
19	11/15/2009	PEN4	1232	3	3/26/2010
20	11/16/2009	PEN5	1552	3	3/26/2010
21	11/21/2009	TSK4	912	2	2/19/2010

PIG: Pine Island; TSK: Thwaites, Smith, Kohler

[1] Ice surface elevation data needed to complete processing

[2] Crane Glacier portion to be processed first, remainder of flight to be processed later

Deliverables (to be posted on CReSIS web site):

- 1. Ice thickness and bed elevation files
- 2. Ice thickness and bed elevation maps (3D for grids, 2D for single lines)

Science data products

Ice thickness data

- indexed with GPS coordinates
- about 5-m thickness accuracy

Bed elevation data

- indexed with GPS coordinates
- about 5-m elevation accuracy

Ice thickness and 3-D bed elevation maps

- spatial resolution dependent on surveyed grid density
- post accuracy about 5 m

Pine Island preliminary ice thickness results

Pine Island preliminary ice thickness results

Produced by Ken Jezek at Ohio State U from Nov 7 and Nov 9 data

KU - BEDMAP Difference Map

Shows biases over the Hudson Mountains; favorable agreement over Pine Island Glacier; comparison indicates thinning in upper reaches of the data set.

Pine Island preliminary ice thickness results

KU – UT Difference Map Shows large differences over Hudson Mountains; excellent agreement on downstream portion of ice shelf. Some thinning suggested in upper reaches of data set.

Texas gridded data report 200-300 m thickness in sea ice filled embayments.

Pine Island preliminary bed elevation results

Pine Island preliminary bed elevation results

Conclusions

- MCoRDS data processing is on schedule
- Preliminary results from Pine Island geocoded thickness data seem consistent with ice margin location per the ALOS mosaic
- Texas and KU gridded thickness data show evidence for thinning (100 m) on the ice shelf from 2004-2009
- All data sets report substantial ice where there are in fact rocky outcrops.
- U.Texas gridded data show thick glacier ice in what must be sea ice embayments.
- Icebridge and 2004 data segment are systematically different by about 50 m (thinning or a timing bias?)